Data Presentation, Structures, Formats, and Scalability

of Applications - How do They Fit Together?

.R. Maul
DNRE Tatura, Ferguson Rd, Tatura ViC 3616, Austraiia (Christian. Maul@wnre vic.gov.au)

Abstract: On the desktop, spreadsheets are a widely used and excellent tool for managing and presenting
data. Experience in the use of Excel can be assumed to be common knowledge as it is the predominant
spreadsheet program. However, Excel is a purely desktop program and fails to address issues of scalabilicy
and distributed computing. This is appropriate for applications with undemanding data requirements. For
models with larger data requirements databases are needed and attention must be paid to data structures and
data formats. Usually it is not only a fechnical problem of formats but also an issue of proper data
description or metadata. If it is left to the user to produce complex and accurate data in the correct form the
application is doomed. Applications start out as simple but grow in compiexity and size. Data sets may alsc
grow to a size where databases are required or data generation becomes a specialised task. Formula One
(F1) from Actuate is proposed as a solution to ali three problems as it is an Excel compatible spreadsheet
engine in Java that is capable of both easy data administration and presentation on a small scale, Extensible
Markup Language {XML) integration and collaboration with databases for large data sets. F1 allows for
both “quick and dirty” implementations and large distributed applications in conjunction with databases
while always maintaining user friendliness.

Keywords: Data management; Software engineering; Java; Software components

interfaces such as SAX {Simple API for JIML) or
JAXP (Java APT for XML Parsing), are clumsy
and still bemng developed. When using XML life
certainly becomes more difficult for the developer
as he must provide a means for the graphical
representation of the data such as style sheets ora

1. INTRODUCTION

Data formats and scalability usually receive the
scantest attention when a new model 15 designed.
Unfortunately this causes problems later on when
the model becomes successful iz extended. It

seems advisable to pay attention not only to the
model being developed but also to its possible
significance in a larger coniext. Input and output
values and formats piay a crucial role from this
point of view.

XML seems to be the choice when ii comes to
data and metadata standards because it is the
industry standard and because it is the lowest
common denominator between platforms and
software systems. However, there are also good
reasons not to use it. The effort needed for data
production and representation is very high, and
components to simplify the job, such as those
available from IBM alphaworks
{alphaworks.ibm.com}, and programming

means for data manipulation. Hence, for data
description, representation and manipulation
purposes spreadsheets seem to be an easy, obvious
choice. There are many good table and
spreadsheet components available such as IClass
Livetable from Sitraka Software
{www sitraka.com), QuickTable from Quicktable
{www.quicktable. com). Formula One for Java
fromm Tidestone (www.actuate.com), and
VisualSoft JBGrid from VisualSoft
{www visualgoft.com}. However, EHxcel is the
predominant spreadshest program and everyone
knows how to use #. Thus, compatibility with
Excel in file formais and calculation engine

1655

function becomes an important criterfon that only
Formula One satisfies.

However, there is also a problem with the
distribution of data. Excel is a deskiop program. It
cannot be used to populate datasets, it does not
know which datasets may be available from other
users, it cannot administrate different versions of
datasets, and it cannot distinguish between
redundant and current datasets. To solve these
problems we need both a database and 2
spreadsheet. A database application alone is not an
option because we do mot want fo progiam 2
graphical user interface {GUI) for cach and every
dataset.

The situation is complicated further by the
differences of scale in data. Sometimes small
tables are needed, sometimes large volumes of
data. What can be done to ensure scalability, good
graphical representation, easy dissemination and
correct data format?

2. METHODS
Four issues need o be addressed:

= wvisual data representation,

readURL{Tormads

s pepulation of data,
» scalability of applications, and
e metadata.

The solution for our data storage should be
distributed, easy to access, have an appealing
graphical representation and an obvious display of
data structures, and should not require toe much
programming effort. It seems advisable to use
spreadsheets for graphical presentation, but it
should be a spreadsheet that can be filled divectty
from a database or from third party sources. The
database should be able to be kept iocally or
distributed on a server. Very often we do not
know the future users of our model, so the ability
to scale up the application and connect via the
Internet might be important. To minimise the
programming effort the spreadsheet should
conform to a component standard, have a compact
file format and be able to read Excel file formats
because this is the predominant spreadsheet
program. Metadata that describe data structures
are rolevant only for a certain size database for
which the number of atiributes has become
confusing and when the database structures must
be communicated.

formads

HTIP GETlformwlats}

appletPARAN e xis}

regues! fle.uxls

filexls

| CLIENT

SERVER i

Figure 1. Using F1 with a central data repository {modified graphic from Actuate,
hitp//www. tidestone.com/demos)

1656

3, RESULTS

The solution to these regquirements could be a
component such as Formula One from Actuate.
Actuate calls it an ‘APl-driven spreadsheet
engine’. It can read and write Excel formats,
generate XML or HTML (Hypertext Markup
Lanpuage), can connect to JDBC databases
(usually translated as Java Database Connectivity,
although it is not an acronym according to Sunj,
[Flanaghan et al. 1999] and has graphics
capabilities. It provides a GUI for data display and
Excel compatible formulae {without the well-
known errors in Excel’s statistical formulae) if the
data need to be manipulated.

Because it is a pure Java component it can be used
in standalone programs or in applets. Apart from
the reporting functionality F1 enables integration
into networks services through either the Java
Server Pages (JSP) APIL servlets which are
programs that reside and execute on a server, or
the Java 2 Enterprise Edition programming
interfaces {(J2EE). Fl provides a GUI in the
simplest case which is 2 standalone application
and data in the form of Excel files.

However, if this does not suffice and data need to
be kept centrally, it is possible to go to the next
step, which is a client-server structure. Data from
a web server are loaded from a file or Excel-form

into an applet as shown in Figure I, Likewise a
Java application could access a file via a serviet or
directly from a web server,

The F1 component itself resides in the client
application in all scenarios so far.

If the guantity of data grows different scenarios
are possible as shown in Figure 2. The data can be
obtained from a database and transported to the
client in one of four formats: XML, HTML, F1 or
Exce! spreadsheet data. The XSLT (Extensible
Stylesheet Language Transformations) processor
uses an associated XSL document to filter and
format an XML flie mto an Fi spreadsheet on the
server, The populated template is then calculated,
processed and passed on to the browser via the
servlet's putput stream.

Using a spreadsheet database as input requires no
metadata because this is an appropriate solution
only for smaller quantities of data. Using XML
there is no metadata Issue because XML comes
with its own metadata standard which is a
description of the data and their structure in the
file header.

The model would usually be part of the serviet. In
the case of XML and HTML data there is no way
to run any model locally as it must be part of the
servlet that sends the results to the client

HTRBL Tabis

raadiURL{serviel)

write{ouiput}

i CUENT

template OBV | datihase

SERVER JEEC

Figure 2. Using F1 with a central database {modified graphic from Actuate,
hitp://www tidestone.con./demos}

657

The model could just as easily sit on the deskiop
as a stand alone application that works on data
tzbles or records received via JDBC. The
java.sgl.Comnention object does not distinguish
between local and remote databases. It expects a
location to be defined as a URL. However, 1t is
necessary fo transform the data received into
something F1 can read. This might be XML with
an XSL stylesheet, Excel or F1 files, SQL data
which are mapped to objects or variables or, in the
worst case scenario, tab or comma delinted {lat
file data which are error prone.

If serious resources and multiple simultanecus
access are required even Java 2 Enterprise Edition
{IZEE) solutions are possible with middleware and
application server. The scarce resource when
using this selution is more likely to be knowledge
rather than money because there are open source
application servers available such as JBOSS
{(www jboss.org} or JOnAS (www.evidian.com).

The client side is as flexible as the server side:
data could be delivered as XML or HTML to the
client, or as an applet with F1 doing the display, or
the servlet could use Excel to display by setting its
outpui stream with a Multipuepose Internet Mail
Extension (MIME} type to Excel This forces the
browser to load the Excel plug-in and display the
spreadsheet in Excel on the client's machine.

Another alternative, displaying the data with an
applet, enables the user to run the model heoth
either locally, as part of the applet, or remotely,
where it is embedded in the serviet. The model
can run entirely or partly in the applet because the
entire range of the Java programmung language is
available on both sides.

In all other cases the model must m in the
servlet. I'1 resides only on the server side unless it
is used for display purposes on the client side.

Obviously, the design of the application on the
client side deternmypes the server side. In other
words any processing, that is running of a model,
that cannet or does not happen on the client side
must happen on the server side and vice versa.

4. DISCUSSION

Using a component like FI helps to quickly
develop a good locking GUT and to get data into
any application easily. It achieves a good deal of
our target of making life as easy for the developer
as it is or should be for the end-user. The
presentation of data as spreadsheet data enables
comfortable data manipulation and builds on the
existing knowledge of mode] users.

What is more, as data sets grow they can be kept
centrally in a database. The design is scalable to
any size to which our model might grow in the
future. [t can consist of spreadsheet files on a
desktop and it can adapt to large. diverse
structures such as webserver with JSP with or
without servlets and database or J2EE applications
with middleware and application server. However,
it enables the developer to stay on any step of the
ladder if it is sensible and comfortable and to
move on to the next more complicated step shouid
it he required. At any level it looks the same for
the end user regardless of whether his objects are
local or remote omes. The beauty for the
programmer is that everything done so far can he
reused while adding the complexity needed to run
distributed applications.

If the system is located on a server no client-side
software or client data need to be updated.

Using components such as these dogs come at a
price. Developing programs this way can be quick
but it is certainly expensive. However, because all
future development opportunitics are kept open it
is a worthwhile expense for projects with a long
term perspective.

5. REFERENCES

Flanaghan, D., Farley, I, Crawford, W,
Magnusson, K., Java Enterprise in a
Nutshell. O°Reilly, Sebastopol, CA, US,
1999,

hitp./fwww tidestone.com/demos_{1j_9.0/about js
F1 for Java 9.0 - Java API Demos1999

1658

For each of these options, the cane supply
optimisation {CS0Q) model optimised decisions
relating to the amount (tonnage) of sugar cane o
be harvested from farm paddocks by crop class and
variety, during fixed time intervals (fortrights)
throughout the harvest season. These decisions
were pgenerated according to the criterion of
maximising net profit to the sugar industry, within
a sugar mill region, while meeting the operational
constraints associated with harvesting, transport
and mill crushing capacity {Higgins, 1999]. As net
profit is linked to a relative payment scheme where
a grower is paid according to daily calculations of
farm CCS units relative to the mill CC8 for cane
supplied on the day, the CSO meodel also requires
input data which describes the trends in farm CCS
relative to the mill across the harvest season. Using
historical block productivity data {Chardon and
Smith, 1993], the estimation of farm and paddock
velative CCS was achieved through the
development of a statistical model which captures
some of the variation associated with farm
{confounding the effects of farm management and
physical location), crop class and variety, with
harvest date {Higgins and Haynes, 2001} A crop
class refers to whether the cane on a farm paddock
is plant crop {around 1 year after planting), first
ratoon f{around 2 years after planting), second
ratoon and so on. A ratoon is the re-growth of the
plant from the established plant base (stool} after
the top is removed at harvest.

The application of these options analysis
techniques have shown considerable potential
gains to the industty for case studies in the
Mossman, Mackay and Maryborough sugar
regions [Higgins, 1999]. For the potential gains to
be wholly or even partially realised in practice, the
optimal harvest date decisions generated by the
"5 model for the chosen harvest scheduling
option had to be presented in an uncomplicated
form that can be successfully implemented in the
field. Therefore, the implementation phase of the
project required the formulation of a framework
for generating guidelines which provided a suitable
harvest schedule for the clients (growers, harvester
operators and millers) to implement in the field
while reflecting the optimal harvest date decisions
required to achieve the gains estimated by the C50
model.

The large numbers of growers imierested in
participating in the pilot studies for the 2000
harvest season, highlighted the need for the fast
and efficient generation of harves! schedules for
selected farms. This was achieved through the
development of a framework which Incorporated:

1660

the CSO model,

a database system which combines model
results with paddock crop information and
stores historical productivity data,

decision support tools, and

expert intervention by the grower,

L

<]

The whole process involved in establishing the
pilot studies, including research into apprepriate
mode! development, extensive consultations with
growers and the development of a framework for
generating harvest schedule guidelines, has
provided new tools and a better understanding of
the requirements for the successful implementation
of alternative cane supply options.

PILOT STUDIES OF THE CANE
SUPPLY OPTIONS

2.

During the 2000 and 2001 harvest seasons, pilot
studies were conducted in the case study regions of
Mossman and Mackay, and in Maryborough
during 2001, to evaluate the success of the
framework in producing harvest schedules which
are easy io implement in practice, and also to
assess the wvalidity of the harvest decisions
generated by the CSO model. The evaluation of
these pitot studies for the 2000 harvest season can
be found in [Higgins et al., 2000].

The industry agreed to pilot Options 2 and 3 in
Mossman, Mackay and Maryboreugh. In addition,
Option 1 was piloted in Mackay through the
Harvesting Equity Exchange Scheme (HEES)
[Muchow et al, 2000]. Option 2 presenis an
alternative cane supply armangement for harvesting
groups that prefer not fo participate in full
geographical harvesting or are not suited to Option
1. Participation in Option 2 involves the relaxation
of farm equity within a group and may lead to a
potential gain in farm profitability without
sacrificing harvesting group equity.

Option 3 provides growers with guidelines to make
informed decisions about best harvest dates of
farm blocks without any change to the existing
harvesting and farm equity structures. The greatest
benefits are most likely to be realised for farms
which have geographically dispersed blocks with
different crop class characieristics. All growers not
participating in Option 1 were invited to
participate in the pilot study for Option 3.

